
MATHEMATICS OF COMPUTATION, VOLUME 28, NUMBER 127, JULY 1974, PAGES 833-838

Generating the Nine-Point Graphs

By H. H. Baker, A. K. Dewdney and A. L. Szilard

Abstract. A program has been written which recently generated all the (unlabelled)
nine-point graphs. Written in MACRO-10 assembly language and run on a 165K PDP-
10, it generates the complete set of 274,668 graphs in less than six hours. The algorithm
on which this program is based is discussed with an emphasis on coding of graphs and
various programming techniques designed to save space and time during execution.
The methods developed may have applications in other combinatorial generating
problems.

The two classic problem types in combinatorial analysis have been existence
and enumeration of combinatorial structures. In the latter type of problem,
one attempts to produce a formula giving the number of combinatorial
structures obeying certain restrictions. It often happens that the descriptions
of such structures are not unique and one must take care in the enumeration
that no two descriptions correspond to the same structure. If they do, the
two descriptions are called "isomorphic". In recent years, a third type of
problem called "generative enumeration" [7], has appeared. Here, instead
of a formula, one attempts to supply an actual list or catalogue of these
structures using a computer.

The generative enumeration of combinatorial structures is usually a
challenging and interesting task. Recent efforts in this direction include the
generative enumeration of eight-point geometries by Blackburn, Crapo and
Higgs [1], generative enumeration of eighteen-point trees by P. Fraser
(University of Waterloo -unpublished), generative enumeration of eight-
point graphs by Heap [6]. This list is far from exhaustive.

The production of such catalogues of combinatorial structures have a
further, pragmatic raison d'etre. Mathematicians may use them to check
conjectures in low-order cases. Chemists and physicists sometimes find
various discrete structures modelled by combinatorial objects: it becomes
of interest to observe which structures so catalogued fail to appear in nature.

General Description of the Algorithm. Most generative enumeration programs
are conceptually divisible into two parts. In the first part, candidate objects
are computed or retrieved from some list and in the second part a list is
constructed to which the most recently considered candidate object is added
if it fails in an isomorphism test when matched against all the objects already
in the list. To this basic process. many efficiencies, on both the algorithmic

Copyright 0 1974, American Mathematical Society

833

Received January 12, 1973.
AMS (MOS) subject classifications (1970). Primary 05C30, 68A10.
Key words and phrases. Graph, generative enumeration, graph isomorphism, filter, pre-

liminary code, filtered code, maximal code.

834 H. H. BAKER, A. K. DEWDNEY AND A. L. SZILARD

and programming levels, may be introduced. Our program is first discussed
in a general way on the algorithmic level. Shown in Fig. 1 below is a table
[3, P. 214] displaying the number of nine-point graphs with from 1 to 18 lines.

number number of
of lines nine-point lines graphs lines graphs

graphs

1 1 7 148 13 10120
2 2 8 345 14 15615
3 5 9 771 15 21933
4 11 10 1637 16 27987
5 25 11 3252 17 32403
6 63 12 5995 18 34040

FIGURE 1. Enumeration by numbers of lines of the nine-point graphs

To generatively enumerate the nine-point graphs with n ? 18 lines, we
catalogue first the nine-point graphs with n =1 lines. A catalogue of nine-
point graphs on n lines is produced by having at our disposal a list GlO-,
G2-., Gfn(-1) of all f(n -1) * nine-point graphs on n -1 lines. To each
graph Gin-l, a line is added to produce a candidate graph G0-. Since there are
36 - (n -1) ways of adding a new line to Gi,, this many candidate graphs
are produced from each (n - 1)-line graph and j = 1,2, 2 * *, 36 - (n - 1).

A candidate graph 0?, is matched against each graph in a list Gn, G2n, GP *,

of graphs on n lines already produced by the algorithm.
If G0, is found to be isomorphic with any of the graphs Gr', it is discarded

and the next candidate graph is tried. Many kinds of isomorphism tests
may be considered at this point. Although general isomorphism algorithms
have received some study, [2] for example, their generality makes them
less efficient to implement in low-order cases than "custom-designed"
algorithms which take advantage of the small size of the graphs to be tested.
In our program, the obvious and most inefficient isomorphism algorithm is
used as a basis for the isomorphism test, namely that of permuting the points
of G0? in all possible ways, checking each time to see whether it has become
identical with Gq'. The obvious inefficiency of 9! operations is vastly reduced
by interposing various "filters" into this process so that not all 9! permuta-
tions need be attempted. A filter is an integer-valued function on the points
of a graph with the property of being invariant under graph isomorphism.
Thus, filters enable us to restrict our permutations to points having the
same set of filter values.

Even with such filters present, the number of comparisons to be made can
be quite large. The computation corresponding to this comparison must be

* The number f(n) of nine-point graphs having n lines may be computed using P6lya's
formula [3, p. 185].

GENERATING THE NINE-POINT GRAPHS 835

carried out in the order of N2 times, where N is the number of graphs to be
generated. For this reason, the algorithm does not carry out these comparisons
directly with the graphs Gk, but generates for each candidate graph G~, a
special code number C(GQ). The actual matching process now proceeds at
the speed of the computers unit operations. Although the burden of the
above computation (using the filtering process) has been shifted to the
production of the code, it must now be carried out in the order of only N
times. Of course, even N2 numerical comparisons can be time-consuming.
By use of scatter-storage techniques, the number of comparisons was drastically
reduced to an average of roughly 4.

Machine Representation of Nine-Point Graphs. The nine-point graph
generating program was written for a time-shared 165K PDP-10 computer.
With a little more than lOOK of 36-bit storage words available, and more
than 34,000 graphs to store in the biggest case when n = 18, it was essential
to develop a compact representation for nine-point graphs. In Fig. 2(a)
below, a nine-point graph is shown. In Figs. 2(b) and 2(c), the upper half of
its adjacency matrix (reflected about the vertical) and its machine repre-
sentation appear.

1 9 8 76 . 4 3 2

2

3 3

~4 1

14 7
61 1

5 6 7 1

(a) (b)

UJ~iL'~'1' I 1111[?111.[.1L..JI1.I tl I IJ II'll I' I
Row 8 7 6 5 4 3 2

(c)

FIGURE 2. A nine-point graph, its adjacency matrix and PDP-10 machine-uord representation

Although only half of the graph's adjacency matrix [3, p. 150] is shown
above, its symmetry about the diagonal has been exploited. Thus, the ijth

836 H. H. BAKER, A. K. DEWDNEY AND A. L. SZILARD

entry of this upper half-matrix is a 1 or a 0 according as the line joining the
ith and jth points is present or absent. As luck would have it, the rows of
this upper half-matrix can be strung together into a single 36-bit machine
word as shown in Fig. 2(c). One could employ the corresponding representa-
tion for a ten-point graph (with 45 possible lines) only by having available
a 48-bit (or larger) machine.

Filters and Codes. With any graph G on p points, it is possible to associate
two sequences of p nonnegative integers. The 1-degree (2-degree) of a point
of G consists of the number of lines (triangles) with which that point is
incident. These numbers are arranged in nondecreasing fashion to yield
the 1-degree (2-degree) sequence. In the graph shown above, the 1- and 2-
degree sequences are 122223345 and 000111222, respectively.

In the generative enumeration process, a graph Gin1 on (n -1) lines is
retrieved from the (previously-generated) list of such graphs. It is retrieved
with the above representation, and a given 0-bit is changed to a 1-bit re-
sulting in a preliminary code PC(G'-) of the corresponding candidate graph
G'-. The 1-degree and 2-degree sequences are now computed for G0, from
PC(G0) by simple bit-count procedures employing logical operations between
various mask words and PC(G0,). Corresponding to each point of G~,, a
2-digit number, consisting of the 1-degree and 2-degree of that point, is
created. These numbers are then sorted into nondecreasing order, and the
filtered code FC(G0j) is computed from the preliminary code as the 36-bit
word corresponding to an adjacency matrix for Gij whose rows and columns
are consistent with this order. Continuing with the above example, the 2-
digit numbers corresponding to the points labeled 1 through 9 are 30, 20, 10,
42, 32, 52, 21, 21, 21. These numbers are given a nondecreasing order: 10,
20, 21, 21, 21, 30, 32, 42, 52. One permutation of the points of this graph
consistent with this order is 329871546. There are 3! such permutations in
this case, corresponding to each of the ways one may permute the points
whose filter-value is 21. Originally, the machine representation of this graph
(interpreted as an octal number) was 134630001023. The representation
corresponding to the above permutation is 744213024020. Both the pre-
liminary and filtered codes of course represent G0. and no other graph. The
filtered code is much closer to being a unique representation of this graph
since there are (in general) far fewer filtered codes for G, than preliminary
codes. By use of scatter-storage techniques [5], it is more quickly checked
whether the filtered code is already stored in the list of graphs Gk than to
further improve the code in some manner. This is particularly of advantage
when such a code is found already in the list. The candidate graph G', can
then be rejected. Now, the new candidate graph Gnij+1 is generated unless
j=36 - (n - 1), in which case the new candidate graph is G,+1,l.

If such a code is not found on the list, new codes are computed from the
filtered code. These codes are the new machine words corresponding to the

GENERATING THE NINE-POINT GRAPHS 837

results of orderly permutations of the points of Gff1 having the same filter-
value. As soon as a code having a two's complement binary value larger
than FC(GL'j) results from this process, the program hashes to the corre-
sponding location. If an identical code is found there, G0, is rejected (as
above). If no such code is found, more codes are generated corresponding
to further permutations of the points of Gqj. Sooner or later, either a matching
code is found in memory or the available permutations are exhausted. In
this case, G0, is added to the list in the form of its most recent code MC(G03),
called the maximal code of Gn. The maximal code uniquely represents G0
relative to the algorithm and the list G-', G2n-1, Gfn(l1) of graphs on
n -1 lines. The method of generating the maximal code is based on Johnson's
"adjacent-mark" method of generating permutations [4]. This method
was found to be most efficient for our purposes.

Further Efficiencies. After the final run was made, another possible filter
was discovered. It would appear that a major efficiency may be introduced
by checking for similar points [3, p. 171] in a candidate graph. Two such
points are adjacent to the same set of points in the graph. A quick survey
of exemplar graphs indicated that two points with the same 1- and 2-degree
were not very likely to be similar. If two such points were not similar, then
all code productions corresponding to any permutation interchanging that
pair of points could be bypassed. A similarity test between a pair of points
may be performed more quickly than a 2-degree computation for a single
point. Of course, there was no opportunity to implement this technique in
time for the run. However, it is an interesting problem to analyse the savings
yielded by various filters as against the cost of introducing them.

The nine-point graphs on from 1 to 18 lines have been stored on 9-track
magnetic tape and are available (with instruction)** from the authors at
a tape cost of $20.00. All nine-point graphs having more than 18 lines may
be easily generated by the user of this tape by taking the l's complement of
every graph on it with up to 17 lines.

The authors would like to thank Mr. George Lake, director of the University
of Western Ontario Computing Centre, for his valuable assistance in making
available special conditions for many of our runs. We would also like to
thank the University of Western Ontario Research Council for the computing
grant which made the resulting catalogue possible.

Computer Science Department
University of Western Ontario
London, Ontario, Canada

**The tape must be reformatted for IBM machines.

1. J. F. BLACKBURN, H. CRAPO & D. A. HIGGS, "A catalogue of combinatorial geometries,"
Math. Comp., v. 27, 1973, pp. 155-166.

2. D. G. CORNEIL & C. C. GOTLIEB, "An efficient algorithm for graph isomorphism,"
J. Assoc. Comput. Mach., v. 17, 1970, pp. 51-64. MR 43 # 4703.

838 H. H. BAKER, A. K. DEWDNEY AND A. L. SZILARD

3. F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969. MR 41 # 1566.
4. S. M. JOHNSON, "Generation of permutations by adjacent transposition," RM-3177-PR,

The RAND Corp., Santa Monica, Calif., 1962; Math Comp., v. 17, 1963, pp. 282-285. MR 28
2980.

5. R. MORRIS, "Scatter storage techniques," Comm. ACM, v. 11, 1968, pp. 38-44.
6. R. C. READ, Graph Theory and Computing, Academic Press, New York, 1972.
7. M. B. WELLS, Elements of Combinatorial Computing, Pergamon Press, Oxford, 1971.

MR 43 # 2819.

