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Generating the Nine-Point Graphs 

By H. H. Baker, A. K. Dewdney and A. L. Szilard 

Abstract. A program has been written which recently generated all the (unlabelled) 
nine-point graphs. Written in MACRO-10 assembly language and run on a 165K PDP- 
10, it generates the complete set of 274,668 graphs in less than six hours. The algorithm 
on which this program is based is discussed with an emphasis on coding of graphs and 
various programming techniques designed to save space and time during execution. 
The methods developed may have applications in other combinatorial generating 
problems. 

The two classic problem types in combinatorial analysis have been existence 
and enumeration of combinatorial structures. In the latter type of problem, 
one attempts to produce a formula giving the number of combinatorial 
structures obeying certain restrictions. It often happens that the descriptions 
of such structures are not unique and one must take care in the enumeration 
that no two descriptions correspond to the same structure. If they do, the 
two descriptions are called "isomorphic". In recent years, a third type of 
problem called "generative enumeration" [7], has appeared. Here, instead 
of a formula, one attempts to supply an actual list or catalogue of these 
structures using a computer. 

The generative enumeration of combinatorial structures is usually a 
challenging and interesting task. Recent efforts in this direction include the 
generative enumeration of eight-point geometries by Blackburn, Crapo and 
Higgs [1], generative enumeration of eighteen-point trees by P. Fraser 
(University of Waterloo -unpublished), generative enumeration of eight- 
point graphs by Heap [6]. This list is far from exhaustive. 

The production of such catalogues of combinatorial structures have a 
further, pragmatic raison d'etre. Mathematicians may use them to check 
conjectures in low-order cases. Chemists and physicists sometimes find 
various discrete structures modelled by combinatorial objects: it becomes 
of interest to observe which structures so catalogued fail to appear in nature. 

General Description of the Algorithm. Most generative enumeration programs 
are conceptually divisible into two parts. In the first part, candidate objects 
are computed or retrieved from some list and in the second part a list is 
constructed to which the most recently considered candidate object is added 
if it fails in an isomorphism test when matched against all the objects already 
in the list. To this basic process. many efficiencies, on both the algorithmic 
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and programming levels, may be introduced. Our program is first discussed 
in a general way on the algorithmic level. Shown in Fig. 1 below is a table 
[3, P. 214] displaying the number of nine-point graphs with from 1 to 18 lines. 

number number of 
of lines nine-point lines graphs lines graphs 

graphs 

1 1 7 148 13 10120 
2 2 8 345 14 15615 
3 5 9 771 15 21933 
4 11 10 1637 16 27987 
5 25 11 3252 17 32403 
6 63 12 5995 18 34040 

FIGURE 1. Enumeration by numbers of lines of the nine-point graphs 

To generatively enumerate the nine-point graphs with n ? 18 lines, we 
catalogue first the nine-point graphs with n =1 lines. A catalogue of nine- 
point graphs on n lines is produced by having at our disposal a list GlO-, 
G2-., Gfn(-1) of all f(n -1) * nine-point graphs on n -1 lines. To each 
graph Gin-l, a line is added to produce a candidate graph G0-. Since there are 
36 - (n -1) ways of adding a new line to Gi,, this many candidate graphs 
are produced from each (n - 1)-line graph and j = 1,2, 2 * *, 36 - (n - 1). 

A candidate graph 0?, is matched against each graph in a list Gn, G2n, GP *, 

of graphs on n lines already produced by the algorithm. 
If G0, is found to be isomorphic with any of the graphs Gr', it is discarded 

and the next candidate graph is tried. Many kinds of isomorphism tests 
may be considered at this point. Although general isomorphism algorithms 
have received some study, [2] for example, their generality makes them 
less efficient to implement in low-order cases than "custom-designed" 
algorithms which take advantage of the small size of the graphs to be tested. 
In our program, the obvious and most inefficient isomorphism algorithm is 
used as a basis for the isomorphism test, namely that of permuting the points 
of G0? in all possible ways, checking each time to see whether it has become 
identical with Gq'. The obvious inefficiency of 9! operations is vastly reduced 
by interposing various "filters" into this process so that not all 9! permuta- 
tions need be attempted. A filter is an integer-valued function on the points 
of a graph with the property of being invariant under graph isomorphism. 
Thus, filters enable us to restrict our permutations to points having the 
same set of filter values. 

Even with such filters present, the number of comparisons to be made can 
be quite large. The computation corresponding to this comparison must be 

* The number f(n) of nine-point graphs having n lines may be computed using P6lya's 
formula [3, p. 185]. 
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carried out in the order of N2 times, where N is the number of graphs to be 
generated. For this reason, the algorithm does not carry out these comparisons 
directly with the graphs Gk, but generates for each candidate graph G~, a 
special code number C(GQ). The actual matching process now proceeds at 
the speed of the computers unit operations. Although the burden of the 
above computation (using the filtering process) has been shifted to the 
production of the code, it must now be carried out in the order of only N 
times. Of course, even N2 numerical comparisons can be time-consuming. 
By use of scatter-storage techniques, the number of comparisons was drastically 
reduced to an average of roughly 4. 

Machine Representation of Nine-Point Graphs. The nine-point graph 
generating program was written for a time-shared 165K PDP-10 computer. 
With a little more than lOOK of 36-bit storage words available, and more 
than 34,000 graphs to store in the biggest case when n = 18, it was essential 
to develop a compact representation for nine-point graphs. In Fig. 2(a) 
below, a nine-point graph is shown. In Figs. 2(b) and 2(c), the upper half of 
its adjacency matrix (reflected about the vertical) and its machine repre- 
sentation appear. 

1 9 8 76 . 4 3 2 

2 

3 3 

~4 1 

14 7 
61 1 

5 6 7 1 

(a) (b) 

UJ~iL'~'1' I 1111[?111.[.1L..JI1.I tl I IJ II'll I' I 
Row 8 7 6 5 4 3 2 

(c) 

FIGURE 2. A nine-point graph, its adjacency matrix and PDP-10 machine-uord representation 

Although only half of the graph's adjacency matrix [3, p. 150] is shown 
above, its symmetry about the diagonal has been exploited. Thus, the ijth 
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entry of this upper half-matrix is a 1 or a 0 according as the line joining the 
ith and jth points is present or absent. As luck would have it, the rows of 
this upper half-matrix can be strung together into a single 36-bit machine 
word as shown in Fig. 2(c). One could employ the corresponding representa- 
tion for a ten-point graph (with 45 possible lines) only by having available 
a 48-bit (or larger) machine. 

Filters and Codes. With any graph G on p points, it is possible to associate 
two sequences of p nonnegative integers. The 1-degree (2-degree) of a point 
of G consists of the number of lines (triangles) with which that point is 
incident. These numbers are arranged in nondecreasing fashion to yield 
the 1-degree (2-degree) sequence. In the graph shown above, the 1- and 2- 
degree sequences are 122223345 and 000111222, respectively. 

In the generative enumeration process, a graph Gin1 on (n -1) lines is 
retrieved from the (previously-generated) list of such graphs. It is retrieved 
with the above representation, and a given 0-bit is changed to a 1-bit re- 
sulting in a preliminary code PC(G'-) of the corresponding candidate graph 
G'-. The 1-degree and 2-degree sequences are now computed for G0, from 
PC(G0) by simple bit-count procedures employing logical operations between 
various mask words and PC(G0,). Corresponding to each point of G~,, a 
2-digit number, consisting of the 1-degree and 2-degree of that point, is 
created. These numbers are then sorted into nondecreasing order, and the 
filtered code FC(G0j) is computed from the preliminary code as the 36-bit 
word corresponding to an adjacency matrix for Gij whose rows and columns 
are consistent with this order. Continuing with the above example, the 2- 
digit numbers corresponding to the points labeled 1 through 9 are 30, 20, 10, 
42, 32, 52, 21, 21, 21. These numbers are given a nondecreasing order: 10, 
20, 21, 21, 21, 30, 32, 42, 52. One permutation of the points of this graph 
consistent with this order is 329871546. There are 3! such permutations in 
this case, corresponding to each of the ways one may permute the points 
whose filter-value is 21. Originally, the machine representation of this graph 
(interpreted as an octal number) was 134630001023. The representation 
corresponding to the above permutation is 744213024020. Both the pre- 
liminary and filtered codes of course represent G0. and no other graph. The 
filtered code is much closer to being a unique representation of this graph 
since there are (in general) far fewer filtered codes for G, than preliminary 
codes. By use of scatter-storage techniques [5], it is more quickly checked 
whether the filtered code is already stored in the list of graphs Gk than to 
further improve the code in some manner. This is particularly of advantage 
when such a code is found already in the list. The candidate graph G', can 
then be rejected. Now, the new candidate graph Gnij+1 is generated unless 
j=36 - (n - 1), in which case the new candidate graph is G,+1,l. 

If such a code is not found on the list, new codes are computed from the 
filtered code. These codes are the new machine words corresponding to the 
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results of orderly permutations of the points of Gff1 having the same filter- 
value. As soon as a code having a two's complement binary value larger 
than FC(GL'j) results from this process, the program hashes to the corre- 
sponding location. If an identical code is found there, G0, is rejected (as 
above). If no such code is found, more codes are generated corresponding 
to further permutations of the points of Gqj. Sooner or later, either a matching 
code is found in memory or the available permutations are exhausted. In 
this case, G0, is added to the list in the form of its most recent code MC(G03), 
called the maximal code of Gn. The maximal code uniquely represents G0 
relative to the algorithm and the list G-', G2n-1, Gfn(l1) of graphs on 
n -1 lines. The method of generating the maximal code is based on Johnson's 
"adjacent-mark" method of generating permutations [4]. This method 
was found to be most efficient for our purposes. 

Further Efficiencies. After the final run was made, another possible filter 
was discovered. It would appear that a major efficiency may be introduced 
by checking for similar points [3, p. 171] in a candidate graph. Two such 
points are adjacent to the same set of points in the graph. A quick survey 
of exemplar graphs indicated that two points with the same 1- and 2-degree 
were not very likely to be similar. If two such points were not similar, then 
all code productions corresponding to any permutation interchanging that 
pair of points could be bypassed. A similarity test between a pair of points 
may be performed more quickly than a 2-degree computation for a single 
point. Of course, there was no opportunity to implement this technique in 
time for the run. However, it is an interesting problem to analyse the savings 
yielded by various filters as against the cost of introducing them. 

The nine-point graphs on from 1 to 18 lines have been stored on 9-track 
magnetic tape and are available (with instruction)** from the authors at 
a tape cost of $20.00. All nine-point graphs having more than 18 lines may 
be easily generated by the user of this tape by taking the l's complement of 
every graph on it with up to 17 lines. 

The authors would like to thank Mr. George Lake, director of the University 
of Western Ontario Computing Centre, for his valuable assistance in making 
available special conditions for many of our runs. We would also like to 
thank the University of Western Ontario Research Council for the computing 
grant which made the resulting catalogue possible. 

Computer Science Department 
University of Western Ontario 
London, Ontario, Canada 

**The tape must be reformatted for IBM machines. 
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